Proof | Property of Variance (5) 2021-06-21 コメントはまだありません V[aX+bY]=a2V[X]+b2V[Y]+2abCov[X,Y] where Cov[X,Y] is the covariance of X and Y. Proof : Let X, Y be random variables and a, b be any constants. V[aX+bY]=E[{(aX+bY)−E[(aX+bY)]}2]=E[{a(X−E[X])+b(Y−E[Y])}2] (∵ E[aX+bY]=aE[X]+bE[Y] )=E[a2(X−E[X])2+b2(Y−E[Y])2+2ab(X−E[X])(Y−E[Y])]=a2V[X]+b2V[X]+2abCov[X,Y] See also Covariance. Others