Proof | Property of Variance (5)

V[aX+bY]=a2V[X]+b2V[Y]+2abCov[X,Y]
where Cov[X,Y] is the covariance of X and Y.

Proof : Let X, Y be random variables and a, b be any constants.

V[aX+bY]=E[{(aX+bY)E[(aX+bY)]}2]=E[{a(XE[X])+b(YE[Y])}2]   (  E[aX+bY]=aE[X]+bE[Y]  )=E[a2(XE[X])2+b2(YE[Y])2+2ab(XE[X])(YE[Y])]=a2V[X]+b2V[X]+2abCov[X,Y]

See also Covariance.