Let A be a matrix. Then
$$(A^{t})^{t}=A$$
Proof
Suppose that A is an \(n\times m\) matrix as follows:
$$A=\begin{bmatrix}a_{11} &a_{12}&\cdots&a_{1m}\\a_{21} &a_{22}&\cdots&a_{2m}\\\vdots &\vdots & \ddots & \vdots\\a_{n1} &a_{n2}&\cdots&a_{nm}\\\end{bmatrix}$$
Let us denote the \((i,j)\)-entry in A by \([A]_{ij}\).
Then we have
$$[A]_{ij}=a_{ij}\ \ \ \text{ and }\ \ \ [A^{t}]_{ij}=[A]_{ji}=a_{ji}$$
Therefore, we obtain
$$[(A^{t})^{t}]_{ij}=[A^{t}]_{ji}=[A]_{ij}=a_{ij}$$