Let \(E[X]\) be the expectation of X. Then
$$E[X]= M’_{X}(0)$$
Proof
This is the special case of \(E[X^{k}]= [\frac{d^{k}}{dt^{k}}M_{X}(t)]_{t=0}\).
Actually, if we differentiate \(M_{X}(t)=E[\mathrm{e}^{Xt}]\) respect to \(t\), we have
$$M’_{X}(t)=E[X\mathrm{e}^{Xt}]$$
and if we put \(t=0\), we obtain
$$M’_{X}(0)=E[X]$$