Mrs.Mathpedia

Welcome to Math World!

メニュー
  • Calculus
  • Linear Algebra
  • 微積分学
  • ビジネス統計学
  • Python×データ分析

Proof | Property of Moment Generating Functions (2)

2021-06-28
コメントはまだありません

Let \(E[X]\) be the expectation of X. Then
$$E[X]= M’_{X}(0)$$

Proof

This is the special case of \(E[X^{k}]= [\frac{d^{k}}{dt^{k}}M_{X}(t)]_{t=0}\).

Actually, if we differentiate \(M_{X}(t)=E[\mathrm{e}^{Xt}]\) respect to \(t\), we have

$$M’_{X}(t)=E[X\mathrm{e}^{Xt}]$$

and if we put \(t=0\), we obtain

$$M’_{X}(0)=E[X]$$

  • Others

投稿ナビゲーション

Proof | Property of Covariance
Proof | Property of Moment Generating Functions (1)

Search

Mrs.Mathpedia. All Rights Reserved

Powered by WordPress