Proof | Property of Expectations (3)

Let a, b be any constants and X, Y be random variables.
E[aX+bY]=aE[X]+bE[Y]

Proof


Discrete Case

Let f(x, y) be the joint probability function such that f(xi,yj)=P(X=xi,Y=yj).

E[aX+bY]=ij (axi+byj)f(xi,yj)=aij xif(xi,yj)+bijyjf(xi,yj)=ai xifX(xi)+bjyjfY(yj)   (  jf(xi,yj)=fX(xi),   if(xi,yj)=fY(yj))=aE[X]+bE[Y]


Continuous Case

Let f(x, y) be the probability function such that f(x,y)=P(X=x,Y=y).

E[aX+bY]= (ax+bY)f(x,y) dxfy=a xf(x,y) dxdy+b yf(x,y) dxdy=a xfX(x) dx+b yfY(y) dy   (   f(x,y) dy=fX(x),  f(x,y) dx=fY(y))=aE[X]+bE[Y]

Notice that fX(x) and fY(y) are the marginal probability functions.