Let A be \(n\times n\) matrix. Then \(|A^{t}|=|A|\):
$$\left|\begin{array}{ccc}a_{11}& a_{12}&a_{13}\\ a_{21}& a_{22}&a_{23}\\a_{31}& a_{32}&a_{33}\end{array}\right|=\left|\begin{array}{ccc}a_{11}& a_{21}&a_{31}\\ a_{12}& a_{22}&a_{32}\\a_{13}& a_{23}&a_{33}\end{array}\right|$$
Proof
Suppose that A is an \(n\times n\) matrix as follows:
$$A=\begin{bmatrix}a_{11} &a_{12}&\cdots&a_{1n}\\a_{21} &a_{22}&\cdots&a_{2n}\\\vdots &\vdots & \ddots & \vdots\\a_{n1} &a_{n2}&\cdots&a_{nn}\\\end{bmatrix},\ \ \ A^{t}=\begin{bmatrix}a_{11} &a_{21}&\cdots&a_{n1}\\a_{12} &a_{22}&\cdots&a_{n2}\\\vdots &\vdots & \ddots & \vdots\\a_{1n} &a_{2n}&\cdots&a_{nn}\\\end{bmatrix},$$
Let us denote the \((i,j)\)-entry in A by \([A]_{ij}\).
Then we have
$$\begin{eqnarray*}&&[A]_{ij}=a_{ij}\\&&[A^{t}]_{ij}=[A]_{ji}=a_{ji}=:a’_{ij}\end{eqnarray*}$$
Then if we expand the determinant of A across \(i\) th row, we have
$$|A|=\displaystyle\sum_{j=1}^{n}(-1)^{i+j}a_{ij}|A_{ij}|$$
where \(A_{ij}\) represents the submatrix formed by delating the \(i\) th row and \(j\) th column of A.
Similarly, if we expand the determinant of \(A^{t}\) across \(i\) th column, we have
$$\begin{eqnarray*}|A^{t}|&=&\displaystyle\sum_{k=1}^{n}(-1)^{k+i}a’_{ki}|A^{t}_{ki}|\\&=&\displaystyle\sum_{k=1}^{n}(-1)^{i+k}a_{ik}|A_{ik}|\ \ \ \text{( ∵ \(a’_{ki}=a_{ik}\) and \(|A^{t}_{ki}|=|A_{ik}|\) )}\end{eqnarray*}$$
where \(A^{t}_{ki}\) is the submatrix formed by delating the \(k\) th row and \(i\) th column of \(A^{t}\), whose determinant is equivalent to the determinant of \(A_{ik}\).
These equations are equal. Therefore, we obtain
$$|A|=|A^{t}| $$