Proof | Property of Determinant (4)

If two rows of a matrix are equal, its determinant is zero : $$\left|\begin{array}{ccc}a_{11}& a_{12}&a_{13}\\ a_{21}& a_{22}&a_{23}\\a_{21}& a_{22}&a_{23}\end{array}\right|=0$$

Proof

Suppose that \(i\)-th and \(j\)-th rows of a matrix A are equal :

$$A:=\left|\begin{array}{cccc}a_{11}& a_{12}&\cdots &a_{1n}\\\vdots &\vdots &\vdots& \vdots\\a_{i1}& a_{i2}&\cdots &a_{in}\\\vdots &\vdots &\vdots& \vdots\\a_{j1}& a_{j2}&\cdots &a_{jn}\\\vdots &\vdots &\vdots& \vdots\\a_{n1}& a_{n2}&\cdots&a_{nn}\end{array}\right|=\left|\begin{array}{cccc}a_{11}& a_{12}&\cdots &a_{1n}\\\vdots &\vdots &\vdots& \vdots\\a_{i1}& a_{i2}&\cdots &a_{in}\\\vdots &\vdots &\vdots& \vdots\\a_{i1}& a_{i2}&\cdots &a_{in}\\\vdots &\vdots &\vdots& \vdots\\a_{n1}& a_{n2}&\cdots&a_{nn}\end{array}\right|$$

Then, by the property of determinant (3), if \(i\)-th row and \(j\)-th row are interchanged, we have

$$|A|=-|A|$$

Therefore, we obtain

$$2|A|=0$$

and we have proven

$$|A|=0$$