Proof | Double-Angle Formulas

sin2α=2sinαcosα

cos2α=2cos2α1=12sin2α
tan2α=2tanα1tan2α

Proof by Addition Formulas

If we Set β=α in Addition Formulas : sin(α+β)=sinαcosβ+cosαsinβ, we obtain

sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα

Others can be proved similarly.

Proof by De Moivre’s Theorem

By De Moivre’s Theorem, we have

(cosθ+isinθ)2=cos2θ+isinθ

Then if we expand LHS of the above equation

(cosθ+isinθ)2=cos2θ+2isincossin2θ=(cos2θsin2θ)+i(2sincos)

Now, if we compare the real part and the imaginary part on the left and the right side respectively, we obtain

cos2θ=cos2θsin2θ

sin2θ=2sinθcosθ