Inverse Hyperbolic Functions

We define the inverse hyperbolic functions as below : $$\begin{eqnarray*}y=\sinh^{-1}x &\Longleftrightarrow& \sinh y=x \\y=\cosh^{-1}x &\Longleftrightarrow& \cosh y=x \ \ (y\geq 0)\\y=\tanh^{-1}x &\Longleftrightarrow& \tanh y=x\end{eqnarray*}$$

We can see that \(\sinh x\) and \(\tanh x\) are one-to-one, so they have inverse functions denoted by \(\sinh^{-1}x\) and \(\tanh^{-1}x\).

However, \(\cosh x\) is not one-to-one. Therefore we restrict the domain of \(\cosh x\) on \(0\leq x<\infty\).

Then, it becomes one-to-one and we can define the inverse hyperbolic cosine function \(\cosh^{-1}x\).

Expression by Logarithms

\(\sinh^{-1}x=\log (x+\sqrt{x^{2}+1})\)
\(\cosh^{-1}x=\log (x+\sqrt{x^{2}-1})\)
\(\tanh^{-1}x=\frac{1}{2}\log\frac{1+x}{1-x}\)

See also Inverse Hyperbolic Functions Expressed by Logarithms.

Derivatives

\(\frac{d}{dx} (\sinh^{-1}x)=\frac{1}{\sqrt{1+x^{2}}}\)
\(\frac{d}{dx}(\cosh^{-1}x)=\frac{1}{\sqrt{x^{2}-1}}\)
\(\frac{d}{dx}(\tanh^{-1}x)=\frac{1}{1-x^{2}}\)
\(\frac{d}{dx} (\mathrm{csch}^{-1}\ x)=-\frac{1}{|x|\sqrt{1+x^{2}}}\)
\(\frac{d}{dx} (\mathrm{sech}^{-1}\ x)=-\frac{1}{x\sqrt{1-x^{2}}}\)
\(\frac{d}{dx} (\mathrm{coth}^{-1}\ x)=\frac{1}{1-x^{2}}\)

Related Articles