Even / Odd Functions

\(f(x)\) is an even function if \(f(-x)=f(x)\) for all \(x\) in its domain.

\(f(x)\) is an odd function if \(f(-x)=-f(x)\) for all \(x\) in its domain.

The graph of an even function is symmetric about the y-axis. Therefore if we have plotted the graph of \(f\) for \(x\geq 0\), we can obtain the entire graph by reflecting about the y-axis.

Example 1 : \(f(x)=x^{4}-3x^{2}-1\) is even since \(f(-x)=(-x)^{4}-3(-x)^{2}-1=x^{4}-3x^{2}-1=f(x)\).

The graph of an odd function is symmetric about the origin. Therefore if we have plotted the graph of \(f\) for \(x\geq 0\), we can obtain the entire graph by rotating through \(180^{\circ}\) about the origin.

Example 2 : \(g(x)=x^{3}-x\) is odd since \(g(-x)=(-x)^{3}-(-x)=-x^{3}+x=-g(x)\).

Notice that there are graphs such that the graphs are symmetric but not symmetric neither about the y-axis nor about the origin. Then the graphs are neither even nor odd.

Example 3 : \(h(x)=x^{2}+2x-2\) is neither even nor odd since \(h(-x)\not=h(x)\) and \(h(-x)\not=-h(x)\) where \(h(-x)=(-x)^{2}-2(-x)-2=x^{2}+2x-2\).

Example 1
Example 2
Example 3

Addition and Multiplication

We denote even functions as (even) and odd functions as (odd) in below.

Addition
(even)+(even)=(even)
(odd)+(odd)=(odd)

Multiplication
(even)×(even)=(even)
(even)×(odd)=(odd)
(odd)×(odd)=(Even)

These can be proved easily by the definition. We only prove the case of (odd)×(odd)=(Even). The others can be proved similarly.

Suppose \(f(x)\) and \(g(x)\) be odd functions. Then we have \(f(x)=-f(-x)\) and \(g(x)=-g(-x)\). Thus we obtain

$$f(x)g(x)=(-f(-x))(-g(-x))=f(-x)g(-x)$$

Integrals

\(\int_{-a}^{a} f(x)\ dx=\begin{cases}2\int_{0}^{a} f(x)\ dx & (\ f(x) : \text{even fun} )\\ & \\0 & (\ f(x) : \text{odd fun} )\end{cases}\)
Proof

First we decompose the integration interval :

$$\int_{-a}^{a} f(x)\ dx=\int_{-a}^{0} f(x)\ dx+\int_{0}^{a} f(x)\ dx$$

If let \(x=-t\), then by the Substitution Rue, the first term is given as below :

$$\int_{-a}^{0} f(x)\ dx=\int_{a}^{0} f(-t)(-1)\ dt=\int_{0}^{a} f(-t)\ dt$$

Then

\begin{eqnarray*}\text{even : } &&\int_{-a}^{0} f(x)\ dx=\int_{0}^{a} f(-t)\ dt=\int_{0}^{a} f(t)\ dt\\\text{odd : } &&\int_{-a}^{0} f(x)\ dx=\int_{0}^{a} f(-t)\ dt=-\int_{0}^{a} f(t)\ dt\\\end{eqnarray*}

Thus we obtain

$$\int_{-a}^{a} f(x)\ dx=\begin{cases}2\int_{0}^{a} f(x)\ dx & (\ f(x) : \text{even fun} )\\ & \\0 & (\ f(x) : \text{odd fun} )\end{cases}$$


Example

Find \(\int_{-1}^{1} (1+3x^{3}+4x^{4}+5x^{5}+6x^{6})\ dx\).

Solution : To make the calculation simple, we decompose into the sum of even and odd functions :

\begin{eqnarray*}\int_{-1}^{1} (1+3x^{3}+4x^{4}+5x^{5}+6x^{6})\ dx&=&\int_{-1}^{1} (1+4x^{4}+6x^{6})\ dx+\int_{-1}^{1} (3x^{3}+5x^{5})\ dx\\&=&2\int_{0}^{1} (1+4x^{4}+6x^{6})\ dx+0\\&=&2[x+\frac{4}{5}x^{5}+\frac{6}{7}x^{7}]_{0}^{1}\\&=&\frac{186}{35}\end{eqnarray*}

Property

Any function can be decomposed into the sum of even and odd functions.

We can prove the above by using the identity \(X=\frac{X+Y}{2}+\frac{X-Y}{2}\).

Proof

Any function f(x) can be composed as

$$f(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}$$

Then \(f_{1}(x):=\frac{f(x)+f(-x)}{2}\) is even since \(f_{1}(-x)=f_{1}(x)\) and \(f_{2}(x):=\frac{f(x)-f(-x)}{2}\) is odd since \(f_{2}(-x)=-f_{2}(x)\).

Example

Exponential function \(\mathrm{e}^{x}\) can be composed as

$$\mathrm{e}^{x}=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$$

The RHS of the equation is called hyperbolic functions. Especially, the first term \(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\) is denoted by \(\cosh x\) and the second term \(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\) is denoted by \(\sinh x\).