A complex number can be represented by an expression of the form \(a+bi\) where \(a\) and \(b\) are real numbers and \(i\) is a symbol with the property that \(i^{2}=-1\).
The real part of the complex number \(a+bi\) is the real number \(a\) and the imaginary part is the real number \(b\).
Example : The real part of \(3+5i\) is the real number \(3\) and the imaginary part is the real number \(5\).
Contents
Equality
Let a, b, c and d be real numbers.
\(a+bi=c+di\) | \(\longleftrightarrow\) | \(a=c,\ \ \ b=d\) |
\(a+bi=0\) | \(\longleftrightarrow\) | \(a=0, \ \ \ b=0\) |
4 Laws
Let a, b, c and d be real numbers.
Sum | \((a+bi)+(c+di)=(a+c)+(b+d)i\) |
Difference | \((a+bi)-(c+di)=(a-c)+(b-d)i\) |
Product | \((a+bi)\cdot(c+di)=(ac-bd)+(ad+bc)i\) |
Division | \(\frac{a+bi}{c+di}=\frac{ac+bd}{c^{2}+d^{2}}+\frac{bc-ad}{c^{2}+d^{2}}i\) where \(c+di\not= 0\) |
Example : \(\frac{2+3i}{1+i}=\frac{(2+3i)(1-i)}{(1+i)(1-i)}=\frac{5+i}{2}\)
Conjugate
For the complex number \(z=a+bi\), we define its complex conjugate to be \(\overline{z}=a-bi\). The geometric interpretation of the complex conjugate is that \(\overline{z}\) is the reflection of \(z\) in the real axis.
Example : If \(z=2+3i\), then \(\overline{z}=2-3i\)
Sum \(\overline{z+\omega}=\overline{z}+\overline{\omega}\) Difference \(\overline{z-\omega}=\overline{z}-\overline{\omega}\) Product \(\overline{z\cdot \omega}=\overline{z}\cdot \overline{\omega}\) Division \(\overline{\frac{ z }{\omega}}=\frac{\overline{z}}{\overline{\omega}}\)
Real / Complex Parts
Let \(z=a+bi\) be a complex number. Then the real part of \(z=a+bi\) is the real number \(a\) and the imaginary part is the real number \(b\).
Real Part of \(z\) | \(a=\frac{z+\overline{z}}{2}\) |
Complex Part of \(z\) | \(b=\frac{z-\overline{z}}{2i}\) |
Example : If \(z=2+3i\), then the real part of \(z\) is \(2=\frac{z+\overline{z}}{2}=\frac{(2+3i)+(2-3i)}{2}\).
If the complex number \(z=a+bi\) is a real number or a pure complex number, they satisfy the following conditions:
\(z\) is a real number. | \(\longleftrightarrow\) | \(\overline{z}=z\) |
\(z\) is a pure complex number. | \(\longleftrightarrow\) | \(\overline{z}=-z\not= 0\) |
Example : \(z=3i\) is a pure complex number. Thus, we have \(\overline{z}=-3i=-z\)
Square root of negative numbers
Since \(i^{2}=-1\), one of square roots of \(-1\) is \(i\). However, we also have \((-i)^{2}=i^{2}=-1\) and so \(-i\) is also a square root of \(-1\). We say that \(i\) is the principal square root of \(-1\) and write \(\sqrt{-1}=i\).
In general, if \(a>0\), we write \(\sqrt{-a}=\sqrt{a} i \).
Example: \(\sqrt{-3}=\sqrt{3}i, \ \ \ \sqrt{-25}=5i \)
With this convention, formula for the roots of the quadratic equation \(ax^{2}+bx+c\) are valid even when \(b^{2}-4ac<0\).
Example: Find the roots of the equation \(x^{2}+3x+3=0\).
By the quadratic formula, we have
$$x=\frac{-3\pm\sqrt{(-3)^{2}-4\cdot 1\cdot 3}}{2}=\frac{-3\pm\sqrt{-3}}{2}=\frac{-3\pm\sqrt{3}i}{2}$$
Related Article
- Complex Plane