Mrs.Mathpedia

Welcome to Math World!

メニュー
  • Calculus
  • Linear Algebra
  • 微積分学
  • ビジネス統計学
  • Python×データ分析

カテゴリー: Others

Proof | Property of Moment Generating Functions (3)
2021-06-28
コメントはまだありません

Proof This can be proven by the property : . Actually, if we differentiate respect to , we have $$M’_{X} […]

もっと読む →
Proof | Property of Moment Generating Functions (1)
2021-06-28
コメントはまだありません

Proof By the Maclaurin series expansion of , we can expand as follows: \begin{eqnarray*}M_{X}(t)&=&E[\ […]

もっと読む →
Proof | Property of Moment Generating Functions (2)
2021-06-28
コメントはまだありません

Proof This is the special case of . Actually, if we differentiate respect to , we have $$M’_{X}(t)=E[X\m […]

もっと読む →
Joint Probability Functions
2021-06-23
コメントはまだありません

Let X and Y be discrete random variables. Then the joint probability function is defined by $$f(x, y)=P(X=x, Y […]

もっと読む →
Proof | Property of Expectations (4)
2021-06-23
コメントはまだありません

Proof To proof the expression, we use the property of . If we let and , we obtain $$E[X-E[X]]=E[X]-E[X]=0$$

もっと読む →
Proof | Property of Expectations (3)
2021-06-23
コメントはまだありません

Proof Discrete Case Let f(x, y) be the joint probability function such that . \begin{eqnarray*}E[aX+bY]&=& […]

もっと読む →
Proof | Property of Expectations (2)
2021-06-22
コメントはまだありません

Proof Discrete Case Let f(x) be the probability function such that . Continuous Case Let f(x) be the probabili […]

もっと読む →
Proof | Property of Expectations (1)
2021-06-22
コメントはまだありません

Proof Discrete Case Let f(x) be the probability function such that . Continuous Case Let f(x) be the probabili […]

もっと読む →
Proof | Property of Variance (4)
2021-06-21
コメントはまだありません

Proof : Let X be a random variable and a, b be any constants. \begin{eqnarray*}V[aX+b]&=&E[\{(aX+b)-E[ […]

もっと読む →
Proof | Property of Variance (5)
2021-06-21
コメントはまだありません

Proof : Let X, Y be random variables and a, b be any constants. \begin{eqnarray*}V[aX+bY]&=&E[\{(aX+bY […]

もっと読む →

投稿ナビゲーション

戻る 1 … 8 9 10 11 次

Search

Mrs.Mathpedia. All Rights Reserved

Powered by WordPress