There are several important limit formulas, but the following two are absolutely important to remember.
$$\displaystyle\lim_{x\rightarrow 0}\frac{\sin x}{x}=1, \ \ \ \displaystyle\lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e}$$
If you remember these, other limit values can be obtained from the formula.
Contents
Trigonometric Functions
In the limit of the indeterminate form of trigonometric functions, the principle is to reduce it to the following formula.
$$\displaystyle\lim_{x\rightarrow 0}\frac{\sin x}{x}=1$$
The limit \(\displaystyle\lim_{x\rightarrow 0}\frac{\sin x}{x}=1\) is not obvious. To prove the above equation, we use a geometric argument. See also proof.
Example
(1)\( \displaystyle\lim_{x\rightarrow 0}\frac{\sin 3x}{5x}=\displaystyle\lim_{x\rightarrow 0}\frac{\sin 3x}{3x}\cdot \frac{3}{5}=\frac{3}{5}\)
(2)\(\displaystyle\lim_{x\rightarrow 0} \frac{1-\cos x}{x^{2}}=\displaystyle\lim_{x\rightarrow 0} \frac{(1-\cos x)(1+\cos x)}{x^{2}(1+\cos x)}=\displaystyle\lim_{x\rightarrow 0} \frac{\sin^{2} x}{x^{2}(1+\cos x)}=\displaystyle\lim_{x\rightarrow 0} \left(\frac{\sin x}{x}\right)^{2}\cdot \frac{1}{1+\cos x}=1^{2}\cdot \frac{1}{2}=\frac{1}{2}\)
(3)\(\displaystyle\lim_{x\rightarrow 0}\frac{\tan x}{x}=\displaystyle\lim_{x\rightarrow 0}\frac{\sin x}{\cos x}\cdot \frac{1}{x}=\frac{\sin x}{x}\cdot \frac{1}{\cos x}=1\cdot \frac{1}{1}=1\)
These expression : \(\displaystyle\lim_{x\rightarrow 0}\frac{\sin bx}{ax}=\frac{b}{a}, \ \ \ \displaystyle\lim_{x\rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2}, \ \ \ \displaystyle\lim_{\theta\rightarrow 0}\frac{\tan \theta}{\theta}=1\) are worth to memorize as formulas.
Logarithmic and Exponential Functions
In the limit of the indeterminate form involving logarithmic functions or \((1+f(x))^{g(x)}\), the principle is to reduce it to the following formula.
$$\displaystyle\lim_{x\rightarrow 0}(1+x)\frac{1}{x}=\mathrm{e}$$
This is the definition of the number \(\mathrm{e}\). This expression is equivalent to the following:
$$\displaystyle\lim_{x\rightarrow \pm \infty}(1+\frac{1}{x})^{x}=\mathrm{e}$$
From the limit, we can obtain the following formulas.
$$\displaystyle\lim_{x\rightarrow 0}\frac{\mathrm{e}^{x}-1}{x}=1,\ \ \ \ \ \displaystyle\lim_{x\rightarrow 0}\frac{a^{x}-1}{x}=\log_{\mathrm{e}} a\ \ (a>0) $$
We prove \(\displaystyle\lim_{x\rightarrow 0}\frac{a^{x}-1}{x}=\log_{\mathrm{e}} a\). ( This is the derivative of \(f(x)=a^{x}\) at \(x = 0\); \(f'(0)\) )
Proof : If we set \(a^{x}-1=t \), then we have \(t\rightarrow 0\) when\(x\rightarrow 0\).
$$\displaystyle\lim_{x\rightarrow 0}\frac{a^{x}-1}{x}=\displaystyle\lim_{x\rightarrow 0}\frac{t (\log_{e} a)}{\log_{e} (1+t)}=\displaystyle\lim_{x\rightarrow 0}\frac{(\log_{e} a)}{\log_{e} (1+t)^{\frac{1}{t}}}=\frac{\log_{e} a}{\log_{e} e}=\log_{e} a$$
Similarly, \(\displaystyle\lim_{x\rightarrow 0}\frac{\mathrm{e}^{x}-1}{x}=1\) can be obetained by setting \(e^{x}-1=t \).
Example
(1) \(\displaystyle\lim_{x\rightarrow \infty} \left(1-\frac{1}{x^{2}}\right)^{x}=\displaystyle\lim_{x\rightarrow 0}\left(\left(1+\frac{1}{(-x^{2})}\right)^{-x^{2}}\right)^{\frac{1}{(-x)}}=\mathrm{e}^{0}=1\)
(2) \(\displaystyle\lim_{x\rightarrow 0}\frac{5^{x}-3^{x}}{x}=\displaystyle\lim_{x\rightarrow 0}\frac{(5^{x}-1)-(3^{x}-1)}{x}=\log_{e} 5-\log_{e}3=\log_{3}\frac{5}{3}\)
(3) \(\displaystyle\lim_{x\rightarrow 0}\frac{\log_{e} (1+x)}{x}=\displaystyle\lim_{x\rightarrow 0} \log_{e} (1+x)^{\frac{1}{x}}=\log_{e} e=1\)
Tricia
The following limit values can be obtained from the derivative at x = 0.
Limit Values | Derivation Method |
\(\displaystyle\lim_{x\rightarrow 0}\frac{\mathrm{e}^{x}-1}{x}=1\) | \((\mathrm{e}^{x})’_{x=0}=\displaystyle\lim_{x\rightarrow 0}\frac{\mathrm{e}^{x}-\mathrm{e}^{0}}{x-0}=\displaystyle\lim_{x\rightarrow 0}\frac{\mathrm{e}^{x}-1}{x}=[\mathrm{e}^{x}]_{x=0}1\) |
\(\displaystyle\lim_{x\rightarrow 0}\frac{\log (1+x)}{x}=1\) | \(\left(\log (1+x)\right)’_{x=0}=\displaystyle\lim_{x\rightarrow 0}\frac{\log (1+x)}{x}=[{\frac{1}{1+x}}]_{x=0}=1\) |
\(\displaystyle\lim_{x\rightarrow 0}\frac{\sin x}{x}=1\) | \((\sin x)’_{x=0}=\displaystyle\lim_{x\rightarrow 0}\frac{\sin x}{x}=[\cos x]_{x=0}=1\) |
\(\displaystyle\lim_{x\rightarrow 0}\frac{1-\cos x}{x}=0\) | \((\cos x)’_{x=0}=\displaystyle\lim_{x\rightarrow 0}\frac{\cos x-1}{x-0}=\displaystyle\lim_{x\rightarrow 0}-\left(\frac{1-\cos x}{x}\right)=[-\sin x]_{x=0}=0\) |
\(\displaystyle\lim_{x\rightarrow 0}\frac{\tan x}{x}=1\) | \((\tan x)’=\displaystyle\lim_{x\rightarrow 0}\frac{\tan x-0}{x-0}=[\frac{1}{\cos^{2} x}]_{x=0}=1\) |
If you’re not sure if the indeterminate limit values are correct, I recommend you to use L’Hôpital’s theorem.