Inverse Trigonometric Functions

The inverse functions of the sine, cosine, and tangent are defined as below: sin1x=ysiny=x     (π2yπ2)cos1x=ycosy=x     (0yπ)tan1x=ytany=x     (π2<y<π2)

The trigonometric functions are not one-to-one, therefore they do not have inverse functions.

However, it is possible to restrict the domain of trigonometric functions so that they become one-to-one and the inverse functions of these restricted trigonometric functions can be defined.

Inverse Trigonometric FunctionsDomainRange
Inverse sine function y=sin1x1x1π2yπ2
Inverse cosine function y=cos1x1x10yπ
Inverse tangent function y=tan1x<x<π2 < y < π2

Symmetry

sin1(x)=sin1x
tan1(x)=tan1x

Noticecos1(x)sin1x

Derivatives

ddx(sin1x)=11x2
ddx(cos1x)=11x2
ddx(tan1x)=11+x2
ddx(sin1f(x))=f(x)1f(x)2
ddx(cos1f(x))=f(x)1f(x)2
ddx(tan1f(x))=f(x)1+f(x)2

Integration

11x2 dx=sin1x+C
11x2 dx=cos1x+C
11+x2 dx=tan1x+C
1a2(px+q)2 dx=1psin1px+qa+C
1a2(px+q)2 dx=1pcos1px+qa+C
1a2+(px+q)2 dx=1aptan1px+qa+C

Related Articles