Exponential Functions

Let \(a\) is a positive constant. Then a function of the form

$$f(x)=a^{x}$$

is called an exponential function with base \(a\).

Rules

\(x\)\(y=a^{x}\)Example
\(x=0\)\(a^{0}=1\)\(3^{0}=1\)
\(x=n\), where n is a positive integer.\(a^{n}=\overbrace{a\cdot a\cdots a}^{n\ \text{factors}} \)\(2^{3}=2\cdot 2\cdot 2=8\)
\(x=r\), where r is a real number.\(a^{-r}=\frac{1}{a^{r}}\)\(2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}\)
\(x=\frac{q}{p}\)(\(x\) is a rational number)
where \(p\) and \(q\) are integers and \(p>0\)
\(a^{\frac{q}{p}}=\sqrt[p]{a^{q}}=(\sqrt[p]{a})^{q}\)\(2^{\frac{5}{3}}=\sqrt[3]{2^{5}}=(\sqrt[3]{2})^{5}\)

properties

Let \(a, b >0\) and \(n, m\) be real numbers.

PropertiesExample
\(a^{n+m}=a^{n}a^{m}\)\(a^{2}a^{3}=(a\cdot a)\cdot (a\cdot a\cdot a)=a^{2+3}=a^{5}\)
\(a^{n-m}=\frac{a^{n}}{a^{m}}\)\(\frac{a^{5}}{a^{3}}=\frac{a\cdot a\cdot a\cdot a\cdot a}{a\cdot a\cdot a}=a^{5-3}=a^{2}\)
\(\left(a^{n}\right)^{m}=a^{nm}\)\(\left(a^{2}\right)^{3}=a^{2}\cdot a^{2}\cdot a^{2}=a^{2\times 3}=a^{6}\)
\((ab)^{n}=a^{n}b^{n}\)\((ab)^{3}=(ab)\cdot (ab)\cdot (ab)=a^{3}b^{3}\)

Graphs

Figure 1If \(0<a<1\),
\(y=a^{x}\) is a decreasing function.
Figure 2If \(a=1\),
\(y=1^{x}\) is a constant function.
Figure 3If \(1<a\),
\(y=a^{x}\) is an increasing function.
Figure 4Notice that \(y=\left(\frac{1}{a}\right)^{x}\) is the reflection of the graph of \(y=a^{x}\) with the respect to the y-axis, since \((\frac{1}{a})^{x}=\frac{1}{a^{x}}=a^{-x}\)
Fig.1
Fig.2
Fig.3
Fig.4

As you see from the graphs, all of \(y=a^{x}\) pass through the points\((0,1)\) and \((1,a)\), and the line \(y=0\) (that is x-axis) is a horizontal asymptote.

Comparison

\(a\)Comparison
\(0<a<1\)\(x_{1}<x_{2}\ \ \ \longleftrightarrow \ \ \ a^{x_{1}}>a^{x_{2}}\)
\(a=1\)\(a^{x_{1}}=a^{x_{2}}\)
\(a>1\)\(x_{1}<x_{2}\ \ \ \longleftrightarrow \ \ \ a^{x_{1}}<a^{x_{2}}\)

Inverse Function

Let a>0 and \(a\not=1 \). Then, the inverse function of the exponential function \(f(x)=a^{x}\) is defined as the logarithmic function with base a. That is

$$\log_{a} x=y\ \ \ \ \Longleftrightarrow a^{y}=x$$

Notice that if a>0 and \(a\not=1 \), the exponential function \(f(x)=a^{x}\)is either increasing or decreasing. Thus, it is one-to-one and we can define the inverse function of it.

Derivatives / Integrals

$$\frac{d}{dx}[a^{x}]=a^{x}\log_{e} a $$
$$\int a^{x}\ dx=\frac{a^{x}}{\log_{e} a}+C$$

We use the fact that \(\mathrm{e}^{\log_{e} a}=a\).

$$\frac{d}{dx}(a^{x})=\frac{d}{dx}(\mathrm{e}^{\log_{e} a})^{x}=\frac{d}{dx}\mathrm{e}^{(\log_{e} a)x}=\mathrm{e}^{(\log_{e} a)x}\frac{d}{dx}(\log_{e} a)x=(\mathrm{e}^{\log_{e} a})^{x}(\log_{e}a)=a^{x}\log_{e} a$$

This can be also proved by using Logarithmic Differentiation Method. By the derivatives formula, we obtain integration formulas as above.